Biodegradable Nanoparticle-Entrapped Vaccine Induces Cross-Protective Immune Response against a Virulent Heterologous Respiratory Viral Infection in Pigs

نویسندگان

  • Varun Dwivedi
  • Cordelia Manickam
  • Basavaraj Binjawadagi
  • Dechamma Joyappa
  • Gourapura J. Renukaradhya
چکیده

Biodegradable nanoparticle-based vaccine development research is unexplored in large animals and humans. In this study, we illustrated the efficacy of nanoparticle-entrapped UV-killed virus vaccine against an economically important respiratory viral disease of pigs called porcine reproductive and respiratory syndrome virus (PRRSV). We entrapped PLGA [poly (lactide-co-glycolides)] nanoparticles with killed PRRSV antigens (Nano-KAg) and detected its phagocytosis by pig alveolar macrophages. Single doses of Nano-KAg vaccine administered intranasally to pigs upregulated innate and PRRSV specific adaptive responses. In a virulent heterologous PRRSV challenge study, Nano-KAg vaccine significantly reduced the lung pathology and viremia, and the viral load in the lungs. Immunologically, enhanced innate and adaptive immune cell population and associated cytokines with decreased secretion of immunosuppressive mediators were observed at both mucosal sites and blood. In summary, we demonstrated the benefits of intranasal delivery of nanoparticle-based viral vaccine in eliciting cross-protective immune response in pigs, a potential large animal model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjuvanted poly(lactic-co-glycolic) acid nanoparticle-entrapped inactivated porcine reproductive and respiratory syndrome virus vaccine elicits cross-protective immune response in pigs

Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is an economically devastating disease, causing daily losses of approximately $3 million to the US pork industry. Current vaccines have failed to completely prevent PRRS outbreaks. Recently, we have shown that poly(lactic-co-glycolic) acid (PLGA) nanoparticle-entrapped inactivated PRRSV vaccine (NP-KAg) indu...

متن کامل

Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs.

Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system e...

متن کامل

Impact of a modified-live porcine reproductive and respiratory syndrome virus vaccine intervention on a population of pigs infected with a heterologous isolate.

The objectives of this study were to evaluate the effects of a therapeutic vaccine intervention with a modified-live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine on the dynamics of a heterologous viral infection in a population of pigs, and to determine the clinical and virological response of previously exposed and vaccinated pigs against a second virulent heterologous c...

متن کامل

An innovative approach to induce cross-protective immunity against porcine reproductive and respiratory syndrome virus in the lungs of pigs through adjuvanted nanotechnology-based vaccination

Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating respiratory disease of pigs. The disease is caused by the PRRS virus (PRRSV), an Arterivirus which is a highly mutating RNA virus. Widely used modified live PRRSV vaccines have failed to prevent PRRS outbreaks and reinfections; moreover, safety of the live virus vaccines is questionable. Though poorly immunogeni...

متن کامل

A VLP Vaccine Induces Broad-Spectrum Cross-Protective Antibody Immunity against H5N1 and H1N1 Subtypes of Influenza A Virus

The recent threats of influenza epidemics and pandemics have prioritized the development of a universal vaccine that offers protection against a wider variety of influenza infections. Here, we demonstrate a genetically modified virus-like particle (VLP) vaccine, referred to as H5M2eN1-VLP, that increased the antigenic content of NA and induced rapid recall of antibody against HA(2) after viral ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012